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Abstract---The deposition of particles in fully-developed turbulent channel flow has been calculated using 
large eddy simulation of the incompressible Navier-Stokes equations. Calculations were performed for 
Reynolds numbers of 11,160 and 79,400 (based on bulk velocity and hydraulic diameter); subgrid-scale 
stresses were parameterized using the dynamic eddy viscosity model. Particle motion was governed by both 
drag and lift. The effect of particle-particle interactions as well as modification of the turbulent carrier 
flow by the particles was neglected. In agreement with previous studies, LES results show that particles 
accumulate in the near-wall region. Statistical measures from the LES calculations such as the particle 
deposition rate are in reasonable agreement with the direct numerical simulation results of McLaughlin 
(1989). For particles with identical relaxation times in wall units, deposition rates at the two Reynolds 
numbers were nearly identical. Issues relevant to application of LES for predicting particle deposition at 
high Reynolds numbers are also discussed. Copyright © 1996 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

Deposition of small particles or liquid droplets in turbulent boundary layers occurs in an extremely 
wide range of industrial and environmental applications. Examples are as diverse as deposition 
from paint sprays, dust inhalation, air pollution, and computer chip fabrication. In these as well 
as many other instances accurate prediction of the complex flow fields encountered in these 
systems is essential to gaining a better understanding of the phenomena governing deposition as 
well as ultimately improving design of the engineering devices in which two-phase flows are 
encountered. 

Traditional methods for simulation and modeling of particle deposition in turbulent boundary 
layers usually rely on solution of the Reynolds-averaged Navier-Stokes (RANS) equations. 
The difficulty with these methods is that they rely on gradient transport hypotheses which do 
not accurately model particle transport, especially near the wall. This aspect of RANS methods 
is especially problematic for particle deposition in turbulent boundary layers. Previous work in 
turbulent channel flow has shown that deposition by turbulent diffusion is negligible and that the 
main contribution to deposition occurs through "free flight", i.e. particles becoming disengaged 
from fluid turbulence and gliding to the wall (Brooke et al. 1994). 

Unfortunately, even combinations of gradient transport and free-flight models do not yield 
satisfactory predictions of particle deposition in turbulence. Swailes & Reeks (1994) formulated a 
pdf method for modeling particle deposition and applied the model to prediction of deposition 
in a homogeneous, stationary turbulent flow; a reasonable approximation to the deposition of 
high inertia particles in a boundary layer. They obtained very good agreement with the random 
walk model of Kallio & Reeks (1989) and also demonstrated that gradient transport and gradient 
transport/free-flight models were not accurate. Thus, while it is possible to resort to statistical 
approaches for prediction of particle deposition in turbulence, predictive techniques which are 
generally applicable to a wide class of flows are still needed. 

The most sophisticated approach for accurately modeling particle deposition in turbulent 
boundary layers is direct numerical simulation (DNS). In DNS the Navier-Stokes equations are 
solved without approximation (other than those associated with the numerical method). DNS has 
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been successfully employed in a number of studies which have increased our fundamental 
understanding of many of the mechanisms governing deposition (e.g. see McLaughlin 1989, 1994; 
Brooke et al. 1992, 1994). These studies have shown that an accurate accounting of the underlying 
turbulent flows is essential for obtaining an accurate representation of particle-turbulence 
interactions and deposition in turbulent shear flows. The primary drawback of DNS, however, 
is that it remains restricted to relatively low Reynolds number flows. 

An approach which is not as severely restricted in the range of Reynolds numbers as DNS is 
large eddy simulation (LES). In LES the large, energy-containing scales of motion are calculated 
directly while only the effect of the smallest (subgrid) scales of motion are modeled. Thus, LES 
results are less sensitive to modeling errors than in RANS calculations and, since the subgrid scales 
are more universal than the large scales, it is also possible to represent the effect of the subgrid 
scales using relatively simple models. The principal advantage of LES over RANS methods is that 
it permits a much more accurate accounting of particl~turbulence interactions. Since the large 
scales are calculated explicitly, many of the important phenomena occurring in particle-laden 
turbulence, e.g. accumulation of particles in low speed streaks and deposition by free flight, can 
be represented in LES. The principal drawback to application of LES for prediction of complex 
flows has traditionally been much the same as that which currently limits RANS methods, i.e. 
an inability of the subgrid-scale (SGS) model to account for changes in the spectral content of the 
turbulence under a variety of conditions, e.g. changes in the Reynolds number, type of flow, etc. 
without ad hoc tuning. The development of dynamic SGS modeling (Germano et al. 1991), 
however, has considerably improved the viability of LES as a tool for prediction of complex flows 
since the eddy viscosity is calculated during the course of the computation and in turn reflects local 
properties of the flow. SGS models which reflect local properties of the turbulence are especially 
attractive for computation of particle-laden flows since predictions of particle transport and 
deposition should be expected to be significantly improved by more accurate parameterizations of 
the turbulence. 

Although LES and dynamic subgrid-scale models are being increasingly used in calculations of 
single-phase turbulent flows (e.g. see Akselvoll & Moin 1993; Squires & Piomelli 1995), they have 
not been widely used in the prediction of particle deposition in turbulent boundary layers. 
Therefore, the primary objective of this work is to use LES for prediction of particle deposition 
in a well-defined turbulent shear flow, fully-developed channel flow, for which DNS results and 
experimental measurements exist for comparison and evaluation of LES predictions (e.g. see Liu 
& Agarwal 1974; McCoy & Hanratty 1977; McLaughlin 1989). Both the present LES and the DNS 
of McLaughlin (1989) are for the deposition of particles in a vertical channel in which the forces 
governing particle motion are drag and shear-induced lift in the form given by Saffman (1965, 
1968). Particle-particle interactions are neglected and the turbulent carrier flow is not modified by 
the presence of the particles. 

Contained in section 2 is an overview of the simulations. Comparison of LES predictions to the 
DNS results of McLaughlin (1989) is presented in section 3. Because of the presence of a second 
phase of dispersed particles, there are additional issues relative to the calculation of deposition 
using LES relative to those arising in simulations of single-phase turbulence. Two of the primary 
issues, i.e. effect of subgrid-scale velocity fluctuations on deposition and treatment of the wall layer, 
are considered in section 4, including calculations of deposition which take into account SGS 
velocity fluctuations. A summary of the work may be found in section 5. 

2. S IMULATION OVERVIEW 

2.1. LES  o f  turbulent channel f low 

In LES the dependent variables are decomposed into a large scale (i.e. resolved) component and 
subgrid-scale contribution. The large scale variables, denoted using an overbar, are formally 
defined by the filtering operation: 

f(x) = ~ f (x ' )d(x ,  x ' )dx' ,  [1] 
do 
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where D is the computational domain and (7 is the filter function. Application of the filtering 
operation to the incompressible Navier-Stokes equations yields the equations governing the motion 
of the resolved scales, 

t3~--2" = O, [2] 

&7, ~ Off 1 t925, (?% [3] 
~ -  + (5,.ffj) = - ~xx,. f Re~ t3xjOxj - t~--~f 

Note that the filtered equations of motion have been made dimensionless using the friction velocity 
u, and channel half-width 3. The Reynolds number appearing in [3] is then Re, = us 3/v,  where v 
is the kinematic viscosity. The velocity components if, for i = l, 2 and 3 refer to the streamwise 
(x), wall-normal (y), and spanwise directions (z), respectively (the usual summation notation 
applies). 

The effect of the small scales on the large energy-containing eddies in [3] is represented by the 
SGS stress, % = uiuj + 5i~j. In this as well as the majority of LES work % is parameterized using 
an eddy viscosity hypothesis, 

l 
z o -- ~6ijzk~ = -- 2vrSij ,  [4] 

where the eddy viscosity is defined as Vr = C7(2[,-q I. The resolved-scale strain rate tensor is 

- 1 / t~5 ,  &if~  
s,,= t,] 

and ISI = ~ is the magnitude of gu" The filter width is 7( = (7(xT(y~z) 113 where 7(x, 7(y, and 
7~ are the grid spacings in the x, y and z directions, respectively. The model coefficient C requires 
specification in order to close the system [2] and [3]. 

In this study the dynamic approach developed by Germano et al. (1991) was used to calculate 
C. The philosophy of dynamic modeling is to take advantage of information available in LES and 
calculate the model coefficient during the course of the simulation using information from the 
resolved scales. In dynamic modeling a second filter, referred to as the test filter and denoted using 
• ~, is introduced. The test filter is defined at a slightly larger scale than the grid filter and is therefore 
applied to a more narrow range of scales. One can define a test filtering operation analogous to 
[1] and application of the test filter to [2] and [3] will yield the equationsAgoverning the test-filtered 
variables. This procedure will in turn yield a subtest-scale stress, T 0 = tii5 j - 5i~j. Germano (1992) 
showed that the relation between z0, T U, and the resolved turbulent stress £fv = u~us - 5~5s is 

~ / j  = T,j - g .  [6] 

In Germano et al. (1991), [4] and an analogous expression for T 0 are substituted into [6]. Lilly 
(1992) used a least-squares approach to solve the resulting system of equations for the model 
coefficient C: 

C ( y ,  t)  = 1 (£ f~M~)x~  [7] 
2 (Mk ,  M u ) x ~ '  

where A 

M~ = 7(21 $ I $' ,j-  7(21SI &j. [8] 

In [7], ()xz denotes averaging over x - z  planes in the channel. Averaging the numerator and 
denominator of [7] are required in order to avoid large local variations in C as well as negative 
values which cause numerical instability. Thus, as shown in [7] the coefficient is a function of 
distance from the wall and time (see Piomelli & Liu 1994; Ghosal et al. 1994, and Meneveau et al. 
1994 for further discussion). The only parameter needed to be specified in the dynamic model is 
the ratio between the test filter width, 7(, and grid scale filter width 7(. As has been shown by 
Germano et aL (1991), LES results are not overly sensitive to this ratio and in this study 7(//3 = 22/3. 
Test filtering in the streamwise and spanwise directions was carried out in Fourier space using 
a sharp cut-off filter. 
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The filtered equations of motion [2] and [3] will allow one to obtain representations of the 
large scales which are statistically similar to DNS results or experimental measurements. A single 
realization of an LES calculation, however, will differ from a DNS or experiment due to errors 
which arise in the LES due to the subgrid model. However, since z~ models only the effect of the 
unresolved scales and the dominant nonlinear transfer is from large to small scales, the large-scale 
statistics should not be unduly influenced by errors in the SGS model. 

The governing equations [2] and [3] were solved numerically using the fractional step method 
(e.g. see Kim & Moin 1985; Perot 1993; Wu et al. 1995). Spatial derivatives were expressed using 
second-order accurate central differences on a fully staggered grid. The continuity equation [2] was 
enforced about the pressure nodes in each cell and the momentum equation [3] was satisfied about 
the velocity nodes. To avoid the stability restriction imposed by the viscous terms an implicit time 
advance scheme was applied. The second-order Adams-Bashforth method was used for advance- 
ment of the convective terms and part of the SGS term while the Crank-Nicholson method was 
applied for update of the viscous terms and a portion of the SGS stress. The Poisson equation for 
pressure was solved using series expansions in the streamwise and spanwise directions together with 
tridiagonal matrix inversion (e.g. see Williams 1969; Kim & Moin 1985). 

Experimental measurements of particle deposition in turbulent flows have shown that, when 
scaled in wall units, the deposition rate is well correlated with the square of the particle relaxation 
time for particles with time constants z + varying from about 0.2 to 23 (Liu & Agarwal 1974; 
McCoy & Hanratty 1977). This feature was examined in the present work using calculations 
performed at two Reynolds numbers, Re~, of 180 and 1000 (based on friction velocity and channel 
half width). The corresponding Reynolds numbers based on centerline velocity are 3200 and 21,900, 
respectively. Those defined using the bulk velocity and hydraulic diameter are 11,160 and 79,400, 
close to the Reynolds numbers of  10,000 and 50,000 in the experiments of Liu & Agarwal (1974). 
The filtered equations were discretized using 64 x 65 × 64 grid points (65 points in the wall-normal 
direction). The channel domain for the calculations performed at Re~ = 180 was 4n6 × 26 x 4n6/3 
and 5n6/2 x 26 × n6/2 for the simulations performed at Re~ = 1000. The spatial resolution in wall 
coordinates in the streamwise and spanwise directions was Ax + = 35 and Az + = 12 at Re~ = 180 
and Ax + = 123 and Az + = 25 at Re~ = 1000. For the moderate Reynolds numbers considered 
in this work the wall-normal direction is resolved, i.e. the first grid point away from the wall 
was located at y + = 0.45 and y + = 0.9 for the calculations at Re~ = 180 and 1000, respectively. 
At substantially higher Reynolds numbers direct resolution of  the wall is not economical and 
different approaches will be required for simulation and modeling of particle deposition (see 
section 4 for further discussion). 

2.2. Calculation o f  particle trajectories 

The particle equation of motion employed in the calculations is similar to that used by 
McLaughlin (1989) and is appropriate for describing the motion of particles with densities 
substantially larger than the surrounding fluid and diameters smaller than the Kolmogorov 
lengthscale: 

dv  i pf  3 C D 
- Iv - u l ( v i -  ui) + f .  [9] 

dt pp 4 d 

In [9] vi is the particle velocity, u~ is the velocity of the fluid at the particle position, and f is 
the lift force per unit mass (directed in the wall-normal direction, i.e. f~ =f3 = 0). The fluid and 
particle densities in [9] are denoted pf and pp, respectively, and d is the particle diameter. Previous 
computations have shown that for particles which deposit the particle Reynolds number, 
Rep = d l u -  v l/v, does not necessarily remain small (McLaughlin 1989). Therefore, an empirical 
relation given by Clift et al. (1978) was used to account for effects of nonlinear drag: 

2 4  [1 + 0.15Re°687]. [101 
Co = Rep 

The calculations correspond to a vertical channel in which gravity does not directly lead to 
deposition and therefore its effect has not been included in [9]. Neglect of gravitational drift also 
facilitates comparison with the DNS results of McLaughlin (1989) in which gravity was neglected. 
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The form of  shear-induced lift in [9] is the same as in McLaughlin (1989) and was derived by 
Saffman (1965, 1968), 

F~ 1 0.343a (v _Ul) dut/dy I 1 ]du~ I 1/2 
f~=~n(a6)3pp u~/6 - ~ Idu,/dy~l ~ -~y 6,~, [11] 

where Fi is the dimensional lift force acting on the particle, a is the particle radius, z is the Stokes 
time constant, and 6~ is the Kronecker delta. It should also be noted that the influence of  virtual 
mass, buoyancy, and the Basset history force on particle motion are neglected in [9]. For  particles 
with material densities large compared to the fluid these forces are negligible compared to the drag. 
More importantly, however, [9] does not account for effects of the wall on particle motion nor 
particle-particle interactions. Modification of  the forces on a particle by these effects could have 
a significant influence on motion very near the wall (e.g. see Chen et al. 1995). 

From computation of an Eulerian velocity field as described in section 2.1, [9] was integrated 
in time using the second-order Adams-Bashforth method. For  particles that moved out of  the 
channel in the streamwise or spanwise directions periodic boundary conditions were used to 
reintroduce it in the computational domain. Deposition was assumed to occur when a particle was 
within one radius of the wall. Since it is only by chance that a particle is located at a grid point 
where the velocity field is available, interpolation is required in order to determine the fluid velocity 
at the particle position. Previous calculations of homogeneous turbulence and turbulent channel 
flow (e.g. Yeung & Pope 1988; Balachandar & Maxey 1989; Kontomaris et al. 1992) have shown 
statistical quantities acquired along particle trajectories are sensitive to the interpolation scheme. 
Fourth-order Lagrange polynomials were used to obtain fluid velocities at particle positions (see 
the appendix for further discussion). 

In the majority of cases considered in this work the particle velocity is driven by the resolved 
fluid velocity in [9], i.e. the contribution of  subgrid scale velocity fluctuations has been neglected. 
Neglect of  particle transport by subgrid scale velocities is a source of error in the simulations and 
should be expected to be more significant for particles with smaller relaxation times, i.e. for particles 
more responsive to subgrid scale motions occurring on smaller timescales. The reader is referred 
to section 4 for additional discussion of  the effect of  the subgrid-scale velocity field on deposition. 

3. R ES U LTS  

The principal focus of this section is comparison of  LES predictions to the DNS results 
of  McLaughlin (1989). Therefore, properties of particle deposition from LES at Re~ = 180 are 
presented for the same particle relaxation times and density ratios as used by McLaughlin (1989). 
For  each time constant 20,000 particles were used in the simulations. The initial locations of the 
particles were chosen randomly and the particle velocity was initially identical to that of  the fluid 
at the particle position. The particle relaxation time is expressed in wall units as z + = 2pa +2/9 
where p = pp/pr. McLaughlin (1989) considered 2 ~< z + ~< 6 and density ratios of 713, 1500 and 
~ .  The corresponding variation in the particle radius a ÷ is 0.11-0.19 for p = 713 and 0.08-0.13 
for p = 1500. Thus, very near the wall the particle diameter can be comparable to the wall-normal 
grid spacing and the effect of  a nonuniform fluid velocity field on particle motion may be less 
accurately represented. 

Shown in figure 1 is the wail-normal profile of the particle concentration. The results shown in 
figure 1 were obtained after 1.56/u, (270 viscous units) for particles with # = 713, z ÷ = 6 and 
p = oo (corresponding to f2 = 0), T + = 2. Figure 1 clearly shows that the particle distribution peaks 
at or near the wall and the effect is much more pronounced for the larger relaxation time. 
Comparison with the initial distribution in figure 1 does in fact indicate that particles with z ÷ = 2 
exhibit larger concentrations near the wall. This result from the present LES is similar to that 
previously demonstrated by McLaughlin (1989) that there is an accumulation of particles in the 
near-wall region; the accumulation being stronger for particles with larger relaxation time (see also 
Brooke et al. 1992, 1994; Rouson & Eaton 1994). For  simulations performed with particles having 
p = 713, z ÷ = 6 the peak concentration is about 7 times larger than for a random distribution while 
the peak concentration is about 1.5 times larger for particles with p --- oo and z ÷ = 6 at t = 1.5. 
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The average Saffman lift force and normal component of the drag force on particles that deposit 
are shown in figure 2. The forces have been averaged over both walls of the channel by reversing 
the signs of the forces for particles which deposited on the upper wall. It may be observed from 
figure 2 that LES predictions are in reasonable agreement with the DNS results of McLaughlin 
(1989); the magnitude and location of the peaks of the forces being reasonably well predicted. For  
increasing particle relaxation times both lift and wall-normal drag forces are reduced relative to 
the values for particles with smaller ~ +. As may be observed from the figure, the reduction in the 
lift force with increasing r + is less than the change observed in the wall-normal drag, consistent 
with the dependence of the drag on 1/z and lift on 1/x/~. It is also apparent in figure 2 that the 
drag force for ~ + = 20 and 40 does not change sign as observed for particles with smaller z + since, 
near the wall, particles with large relaxation times have increasingly larger wall-normal velocities 
than the fluid (c.f. figure 4). Consistent with McLaughlin (1989) as well as Kallio & Reeks (1989), 
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Figure  2. Saffman lift force and  wa l l -normal  c o m p o n e n t  of  d rag  averaged  over  par t ic les  tha t  deposi t ,  
p = 713, Re~ = 180. Uppe r  curves  (near y + = 0) are the drag;  lower  curves  are the lift. LES: z ÷ = 3: -; 
z+  = 4 :  - ;  r + = 2 0 :  - - . - - ;  z+  = 4 0 :  - . . ;  M c L a u g h l i n  (1989) (z+ = 3 ) :  © d rag  force; * lift force. 
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the figure also shows that the lift force is active only in the viscous sublayer. As also shown by 
McLaughlin (1989), though the Saffman lift is small relative to the drag force, the impulse imparted 
to particles is sufficient to cause deposition. 

The ratio of  the average wall-normal component  of  the fluid velocity at the location of  deposited 
particles to the intensity of  the wall-normal fluctuations is shown in figure 3. Figure 3 shows that 
the greatest discrepancy between LES predictions and DNS results is in the behavior for particles 
with z ÷ = 2. The large eddy simulation shows a rapid decrease in the ratio for y + between 5 and 
10 while the DNS results shows a more gradual decrease; the peak in the LES predictions is also 
nearer the wall than in the DNS calculation. Differences between the LES and DNS arise from 
both errors in prediction of  the large scales by LES as well as lack of  sample of  particles over which 
the statistics presented in figure 3 were averaged. The results in figure 3 show that LES is capable 
of  accounting for the fact that the wall-normal velocity of  particles which deposit is substantially 
larger than the wall-normal turbulence intensity and demonstrates the influence of  free flight (see 
Brooke et al. 1994 for a detailed discussion). 

Shown in figure 4 is the relative velocity averaged over deposited particles. In comparison with 
McLaughlin (1989), LES predictions yield approximately the same magnitude and signs in the 
relative velocities for both the streamwise and wall-normal components as well as the location of 
the maximum values. However, it may also be observed that LES predictions for particles with 
z + = 4 are in slightly better agreement with DNS results for z + = 3 than are the LES predictions 
for the same relaxation time. Differences in the streamwise component  of  the slip velocity are 
probably related to the over-prediction of  streamwise intensities in the LES calculation. As pointed 
out by McLaughlin (1989), it is the large difference in streamwise velocities between particles 
and fluid which lead to relatively large Reynolds numbers of  depositing particles. In the present 
study the particle Reynolds number for particles with z ÷ = 6 has a maximum value of  0.2 when 
averaged over all particles in the channel. The maximum Reynolds number of  particles which 
deposit was found to be about  0.9. Both LES and DNS results clearly show that the streamwise 
velocity difference is much larger than the wall-normal relative velocity. More importantly, 
similar to the DNS, LES predictions also show that near the wall particles lead/lag the fluid in the 
streamwise/wall-normal direction but this behavior is reversed for y + greater than approximately 
12-15. It may also be seen in figure 4 that for increasing values of  the particle relaxation time the 
relative velocities in both the streamwise and wall-normal directions increase, consistent with the 
fact that particles with small z + track the flow more closely. 
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Figure 3. Ratio of wall-normal component of averaged fluid velocity at the location of deposited particles 
t o  wall-normal turbulence intensity, p = 713, Re~ = 180. LES: - - .  - -  z + = 2; - - -  z + = 4; z + = 6; 
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Figure 4. Relative velocity averaged over particles that deposit, p = 713, Re, = 180. Upper curves (near 
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* s t r e a m w i s ¢ .  

Correlation coefficients between the wall-normal components of  the fluid and particle velocities 
are shown in figure 5. In general, the agreement between LES predictions and DNS is best for 
particles with larger relaxation times. Particle motion for large z ÷ is mostly influenced by the 
largest scales of  motion, i.e. eddies with timescales comparable to the particle. The largest eddies 
are accurately represented in LES, i.e. less affected by errors in the subgrid model, On the contrary, 
particles with smaller relaxation times are responsive to a broader spectrum of scales. Errors in 
representation of the smallest resolved scales and SGS motions will adversely affect prediction of 
particle motion. However, even for z + = 2 it may be observed in figure 5 that LES predictions of  
the correlation between particle and fluid velocities is satisfactory. Figure 5 also shows that the 
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F i g u r e  5. C o r r e l a t i o n  coe f f i c i en t  o f  t h e  p a r t i c l e  v e l o c i t y  a n d  f lu id  v e l o c i t y  a t  p a r t i c l e  p o s i t i o n  f o r  t he  
p a r t i c l e s  t h a t  d e p o s i t ,  p = 713,  R e ~ =  180. L E S :  - - . - -  z + = 2; - - z + = 4 ;  z + = 6 ;  M c L a u g h l i n  

0 9 8 9 ) :  x z + = 2 ;  O z + = 4 ;  * z + = 6 .  
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correlation coefficients between the wall-normal particle and fluid velocities for the depositing 
particles are much smaller than unity near the wall, especially for particles with large relaxation 
times. This result again demonstrates that particles are brought to the near-wall region by turbulent 
motions but travel to the wall (i.e. deposit) by free flight. 

Additional comparison of LES predictions to experimental measurements and DNS results is 
obtained through examination of the particle deposition rate (also known as the deposition 
velocity). The deposition rate is defined as the ratio of the flux of particles at the deposition surface 
to the particle concentration (i.e. the number of particles per unit volume). For a deposition of 
Nd particles on the wall from a total number N in a time interval t, the deposition rate is then 

Nd/A/t 
Vd= N/----~' [12] 

where A is the area of the deposition surface and V is the volume of the computational domain. 
The particle deposition rate for the same density ratios and particle relaxation times as in the 

DNS study by McLaughlin (1989) is presented in figure 6. Also shown in the figure is the empirical 
expression from Liu & Agarwal (1974). For the range of r + shown in the figure sampling intervals 
greater than 600 wall units were sufficient for obtaining deposition velocities which were converged, 
i.e. increases in the sampling interval did not appreciably change the deposition rate. As can be 
seen from figure 6, LES predictions exhibit the same dependence on relaxation time and density 
ratio as in DNS but are below the results of McLaughlin (1989). The particle deposition rate 
increases for increasing particle relaxation times and decreasing density ratios. Since p = 
corresponds to dropping the lift term from the particle equation of motion, it is evident from the 
figure that the Saffman lift force increases particle deposition. It should also be noted that, for 
fixed T +, the interception length decreases with increasing density ratio and this can also lead to 
a reduction in deposition. It is also clear from figure 6 that both the LES and DNS calculations 
yield deposition rates which are in fair agreement with those obtained from the empirical relation 
of Liu & Agarwal (1974). However, experimental measurements suggest that the deposition rate 
increases quadratically with particle relaxation time whereas figure 6 shows that both LES and 
DNS predict a dependence larger than r + 2 

The specific dependence of the deposition rate on relaxation time and scaling in inner variables 
was investigated through LES of channel flows at a higher Reynolds number than previously 
considered, i.e. Re~ = 1000, and for a wider range of particle relaxation times. The deposition rate 
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as a function of the particle relaxation time is shown in figure 7 for 19 = 713, corresponding to the 
deposition of olive oil droplets in air and considered in the experiments of Liu & Agarwal (1974). 
Also shown in figure 7 are the experimental measurements of Liu & Agarwal (1974) together 
with their empirical relation as well as that from McCoy & Hanratty (1977). It is evident from 
figure 7 that the deposition rates obtained at the two Reynolds numbers are nearly the same, 
implying that the LES properly reflects the scaling of the deposition velocity with relaxation time. 
The magnitudes of  the deposition rate agree well with the experimental measurements for z ÷ > 3. 
However, the deposition rate for smaller relaxation times is less than the experimentally measured 
values. For  small r ÷ it is difficult to obtain accurate values of  the deposition rate since there are 
fewer depositing particles in these simulations. It is further difficult to obtain precise estimates of 
the uncertainty in calculation of the deposition rate since performance of several simulations from 
which one could ensemble average is prohibitively expensive. 

A least-squares fit of  the LES predictions yields a dependence of the deposition rate on particle 
relaxation time of z +:.n which is substantially larger than the quadratic dependence observed 
experimentally. It should also be noted that for the largest relaxation time in the calculation, 

÷ = 200, the maximum value of R% is 4.5 when averaged over all particles; for the depositing 
particles the Reynolds number is even larger. Thus, for increasing values of r ÷application of the 
Saffman formula is questionable and LES predictions for the largest relaxation times must therefore 
be treated with caution. However, it is interesting to note that figure 7 shows the deposition rate 
becomes roughly independent of particle relaxation time for large ~ ÷ and is in reasonable 
agreement with experimentally measured values. 

4. E F F E C T  OF SGS F L U C T U A T I O N S  AND T R E A T M E N T  OF TH E WALL 

In LES the smallest scales of motion are not resolved by the computational grid, only their 
effect on the large eddies is represented via the SGS model. Thus, when considering particle 
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Figure 7. Particle deposit ion rate in turbulent  channel flow, LES calculations performed using Saffman 
lift force, p = 7 1 3 . . . .  V d = 0.0006z+2 (Liu & Agarwal  1974); - - . - -  V d = 0.000325~+2 (McCoy & 
Hanra t ty  1977). LES: O Re~ = 180; * Re~ = 1000; least-squares fit of  LES results; Liu & Argarwal  
(1974) (Reynolds numbers  based on pipe diameter and average velocity): x Re = 10,000; + Re = 50,000. 
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transport and deposition only the large-scale velocity fluctuations are directly available in an LES 
computation for determining particle motion. For the results presented in the previous section the 
effect of  subgrid-scale velocity fluctuations on particle deposition were neglected. This should be 
a justifiable assumption in most applications in which particles with material densities large 
compared to the carrier flow are being considered. In the absence of a mean flow the response of 
particles to the frequency spectrum of the turbulence can be shown to be proportional to 1/(zco) 2 
(co is the frequency). Thus, for increasing values of  the relaxation time and/or frequency the filtering 
of  high frequency motions by particle inertia is significant. 

Nevertheless, one source of  error in LES predictions of particle deposition will be due to 
the neglect of  transport by SGS turbulence. A measure relevant to this error is comparison of  
the smallest resolved timescale in the LES to the particle relaxation time. Shown in figure 8 is the 
wall-normal profile of  the smallest resolved timescale defined in terms of the filter width z~ 
and velocity scale used in specification of  the eddy viscosity ~15 I, i.e. T = 1/IS 1. The timescale 
shown in the figure (in wall units) is from calculations performed at Re~ = 180 and it may be 
observed that T ÷ increases from about  two very near the wall to roughly 20 near the channel 
centerline. Thus, T ÷ is comparable to the particle relaxation times considered in the calculations 
presented in section 3 and it is therefore possible that SGS velocity fluctuations may have 
a measurable effect on deposition, especially for small T ÷. Therefore, the effect of SGS velocity 
fluctuations on deposition was examined by modeling the subgrid-scale velocity field and including 
SGS fluctuations in the particle equation of  motion [9]. 

Calculations were performed in which the fluid velocity in the particle equation of motion 
was the resolved component z%, directly available in the LES, plus a subgrid component u;. 
The magnitude of  the SGS fluctuation u; was determined by solving an additional transport 
equation for SGS kinetic energy, q2. The transport equation used for determination of q2 is that 
proposed by Schumann (1991), i.e. 

+ 

c3q2 zic~q2 12 ~x)(  t3q2"~ ~:q2 q3 
at + "J-~xj 2vrlS + ½ ta v / ~  - -  - w/~c ' -- '  [131 

- -  = + v  ex, Ox, 

f 2  ~3/2 
c, = n \~-ooJ ' la = min{~, c,y}, [14] 

with the Kolmogorov constant k0 = 1.6. 
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Figure 8. Smallest resolved timescale, Re~ = 180. 
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Solution of  [13] yields the magnitude of the SGS kinetic energy throughout the channel. The SGS 
components u~ 2 were then obtained from q2 and specified to have the same relative magnitudes as 
the resolved-scale intensities. The component  fluctuations u~ were then scaled by random numbers 
sampled from a Gaussian distribution and added to tii at the particle location. The complete 
velocity, i.e. ffi + u~, was used in [9] to determine the particle velocity. 

Figure 9 shows the effect of  SGS velocity fluctuations on the lift force and wall-normal 
component  of  the drag averaged over particles that deposit. Profiles are shown for T ÷ = 4 and it 
is clear that the difference between the forces in simulations in which SGS velocities are included 
is small relative to results obtained with no SGS velocities. The effect of  SGS fluctuations on the 
ratio of  the wall-normal component  of  averaged fluid velocity for deposited particles to wall-normal 
turbulence intensity is shown in figure 10. The figure shows that for particles with ~ ÷ = 6, there 
is virtually no effect of  SGS velocities while for ~ ÷ = 2 subgrid-scale fluctuations increase the 
wall-normal velocities for depositing particles by 30% near y ÷ = 5. This result is consistent with 
the arguments made previously in that effects of  SGS fluctuations should be more pronounced for 
smaller z ÷ since these particles are more responsive to a broader range of frequencies of turbulent 
velocities. Predictions of  the particle deposition rate with and without SGS velocities are compared 
in figure 11. The figure again demonstrates the greatest effect of  SGS fluctuations occurs for the 
smallest particle relaxation times. As may be observed in the figure, inclusion of SGS velocity 
fluctuations changes the deposition rate but the difference in predictions with and without SGS 
velocities is relatively small, e.g. less than 10% for z ÷ = 2 and p = 1500. 

The figures shown above are representative samples of the effect of  SGS fluctuations on particle 
deposition. It is important  to note that the effect of  the subgrid scale fluctuations on deposition 
will be dependent upon the Reynolds number or, equivalently, the resolution used in the LES. 
For a fixed geometry and grid size, increases in the Reynolds number will correspond to an 
increasing fraction of turbulence energy residing in the subgrid scales and a greater effect of  
small-scale fluctuations on particle motion. In this work a turbulent channel flow at relatively low 
Reynolds number was considered in order to facilitate comparison to the DNS results from 
McLaughlin (1989). At higher Reynolds number, i.e. coarser resolution, the effect of  SGS 
turbulence will be more pronounced. 

Another aspect of  the current simulations, and common to the majority of  LES calculations 
currently performed, is that the wall-normal resolution is relatively fine. Fine resolution is 
necessarily required in order to adequately capture mean-flow gradients in simulations in which 
the first grid point is located on the wall. At substantially higher Reynolds numbers, however, 

20 

15 

10 

5 

0 

- 5  

-10 

-15 

-21  
' 1 "  0 ' ' ' 5 1 5  20 25 3 0  

y+ 

F i g u r e  9. Effect o f  S G S  veloc i ty  f luc tua t ions  o n  S a f f m a n  lift force  a n d  w a l l - n o r m a l  c o m p o n e n t  o f  
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Figure 10. Effect of SGS velocity fluctuations on the ratio of wall-normal component of averaged fluid 
velocity for particles that deposit to wall-normal turbulence intensity, p = 713, Re~ = 180. No SGS 

velocity: • • • r + = 2; - -  z ÷ = 6; including SGS velocity: - - .  - -  z ÷ = 2. - - -  z + = 6. 

locat ion of  the first grid point  on the wall becomes increasingly expensive. In  LES of  single-phase 
flows the restrictive requirements  imposed by high Reynolds  numbers  are c i rcumvented through 
the use of  approximate  b o u n d a r y  condit ions.  It  is assumed that  the dynamics  of  the wall layer are 
universal  and  some form of  a generalized law of  the wall can be imposed (e.g. see Schumann  1975). 
The first grid po in t  is then located away from the wall and  b o u n d a r y  condi t ions  consistent  with 
a desired proper ty  of  the flow are enforced, e.g. a logari thmic layer. 

It  should be possible to use an extension of this approach to predict particle deposi t ion in 
high Reynolds  n u m b e r  LES provided that  approximate  b o u n d a r y  condi t ions  are available for a 
par t icular  flow field, e.g. pipes and  channels.  One approach is i l lustrated schematically in figure 
12. Shown in the figure is the near-wall  region of  a tu rbulen t  bounda ry  layer in which, for the sake 
of  discussion, approximate  b o u n d a r y  condi t ions  are applied in an LES calculat ion at y + = 200. 
Fo r  larger values of  y + the filtered Navier -S tokes  equat ions  are solved to obta in  a description of 
the large-scale velocity field. Particle mot ion  in the outer  flow is then responsive to the large eddies 
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Figure 11. Effect of SGS velocity fluctuations on particle deposition rate in turbulent channel flow. 
No SGS velocity: - -  p = 713; - - -  p = 1500; including SGS velocity: • •. p = 713; - - .  - -  p = 1500. 
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using LES 
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particle-turbulence interactions 
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Figure 12. A possible approach for calculating deposition at high Reynolds numbers in which the outer 
flow (y ÷ > 200) is calculated using LES. Approximate boundary conditions are applied at y ÷ = 200; 

stochastic models used to account for particle-turbulence interactions below y ÷ = 200. 

(and possibly the SGS velocities using a scheme similar to that described above). As a particle 
moves across the plane y ÷ = 200 only the mean velocity is available via the approximate boundary 
conditions, e.g. the law of the wall. Particle response to turbulent motions requires a model. 
In this region random walk/random flight models may provide a feasible method for modeling 
particle response to turbulence and calculating deposition. The random walk model of  Kallio & 
Reeks (1989) provides one such example. Further, the wealth of  information extracted from DNS 
(e.g. see Brooke et al. 1994) will also be useful for model development. 

5. S U M M A R Y  

Results obtained in this work indicate that LES is a viable approach for predicting particle 
deposition in turbulent boundary layers. LES predictions were found to be in reasonable agreement 
with the DNS results of  McLaughlin (1989). Though LES predictions of  particle deposition rates 
are in relatively good agreement with McLaughlin (1989), the values obtained in both LES and 
DNS are below experimental measurements. Including effects such as particle collisions will further 
improve agreement between simulation and experiment since Chen et al. (1995) have recently 
shown deposition rates are increased by accounting for particle-particle interactions. 

In general, the greatest discrepancy between LES and DNS occurs for particles possessing 
the smallest relaxation times. Since particles with small ~ ÷ are responsive to a relatively broad 
spectrum of turbulent motions, neglect of  subgrid-scale velocity fluctuations is a source of error 
in the use of  LES for calculation of particle transport  in turbulence. However, using a relatively 
simple approach for representation of SGS velocities, it was shown that SGS velocity fluctuations 
did not have a large effect on deposition. At substantially higher Reynolds numbers, however, 
incorporation of SGS fluctuations may be important,  especially for statistics involving wall-normal 
fluctuations. Furthermore,  for very high Reynolds numbers in which approximate boundary 
conditions are used in the LES, treatment of  the near-wall region becomes more complex since 
LES can be used to model particle-turbulence interactions only in the outer flow. Application of 
LES in conjunction with models of  particle transport  very near the wall comprise an important 
direction for future research. 
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A P P E N D I X  

Interpolation of Fluid Velocities 

Since it is only by chance that particles are located at grid points where the Eulerian velocity 
field is available, interpolation from the grid to the particle position is required to obtain the fluid 
velocity at particle locations. Interpolation schemes were investigated using LES velocity fields of 
fully-developed channel flow in which 250,000 particles were randomly distributed throughout the 
channel. Fluid velocities were interpolated to particle positions and statistics of  the fluid velocity 
were calculated by averaging over particles contained within slabs parallel to the wall (i.e. averaging 
over homogeneous x-z  planes). For  an accurate interpolation scheme fluid velocity statistics 
calculated in this manner should converge to those calculated using the fluid velocities directly 
available on the grid. The schemes examined in this work were linear interpolation, fourth-order, 
and sixth-order Lagrange polynomials. Results are shown in figures AI and A2 for the mean and 
rms velocities, respectively. It is clear that all the interpolation schemes yield accurate predictions 
of the mean flow. However, there is a noticeable effect on the velocity fluctuations, especially in 
the wall-normal and spanwise directions. Consistent with results obtained by other investigators 
in both homogeneous turbulence and turbulent channel flow (e.g. see Yeung & Pope 1988; 
Balachandar & Maxey 1989; Kontomaris et al. 1992), the largest differences in interpolated 
velocities is obtained using linear interpolation. Errors in the wall-normal rms velocity are 
approximately 8% using linear interpolation scheme whereas the errors using the fourth-order and 
sixth-order Lagrange polynomials are less than 1%. Though not shown here, similar conclusions 
regarding the effect of interpolation on Lagrangian statistics of fluid elements are also obtained, 
i.e. the largest errors are obtained using linear interpolation while fourth-order Lagrange 
polynomials yields acceptable accuracy. Thus, based upon these findings, in this study fourth-order 
Lagrange polynomials were used for velocity interpolation. 
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Figure AI. Effect of interpolation on mean streamwise velocity in turbulent channel flow, Re~ = 180. 
- -  Eulerian; - - -  linear interpolation; •. • 4th order Lagrange polynomials; -- .  --  6th-order Lagrange 

polynomials. 
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Figure A2. Effect of  interpolation on the rms fluctuating velocity in turbulent channel flow, Re~ = 180. 
(a) streamwise; (b) wall-normal; (c) spanwise. - -  Eulerian; - - -  linear interpolation; . . .  4th order 

Lagrange polynomials; - - . - -  6th-order Lagrange polynomials. 


